DocumentCode :
1908442
Title :
Hierarchical least squares parameter estimation algorithms for dual-rate sampled-data systems
Author :
Ding, Jie ; Ding, Feng ; Liu, Peter X.
Author_Institution :
Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
fYear :
2008
fDate :
12-15 May 2008
Firstpage :
536
Lastpage :
541
Abstract :
In this paper, we combine the hierarchical identification principle with the least square algorithm to identify the parameters of dual-rate sampled-data systems. The hierarchical identification principle is to decompose the identification model of dual-rate systems to several identification sub-models with smaller dimensions and fewer parameters to be estimated, and to present the hierarchical least squares identification algorithm with less computation efforts. We prove the convergence of the algorithm proposed. The simulation example is included.
Keywords :
convergence of numerical methods; least squares approximations; parameter estimation; sampled data systems; convergence; dual-rate sampled-data systems; hierarchical identification principle; least squares parameter estimation; Computational modeling; Convergence; Equations; Instrumentation and measurement; Least squares approximation; Least squares methods; Parameter estimation; Polynomials; Sampling methods; Signal processing; Recursive identification; convergence properties; dual-rate systems; least squares; parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Instrumentation and Measurement Technology Conference Proceedings, 2008. IMTC 2008. IEEE
Conference_Location :
Victoria, BC
ISSN :
1091-5281
Print_ISBN :
978-1-4244-1540-3
Electronic_ISBN :
1091-5281
Type :
conf
DOI :
10.1109/IMTC.2008.4547095
Filename :
4547095
Link To Document :
بازگشت