DocumentCode :
1912764
Title :
Capturing parameter uncertainty in simulations with correlated inputs
Author :
Biller, Bahar ; Gunes, Canan
Author_Institution :
Tepper Sch. of Bus., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2010
fDate :
5-8 Dec. 2010
Firstpage :
1167
Lastpage :
1177
Abstract :
We consider a stochastic simulation with correlated inputs represented by a multivariate normal distribution. The objectives are to (i) account for parameter uncertainty (i.e., the uncertainty around the multivariate normal distribution parameters estimated from finite historical input data) in the mean performance estimate and the confidence interval of the simulation; and (ii) decompose the total variation of the simulation output into distinct terms representing stochastic and parameter uncertainties. We describe how to achieve these objectives using the Bayesian model of Biller and Gunes (2010) for capturing parameter uncertainty and the Bayesian simulation replication algorithm of Zouaoui and Wilson (2003) for output variance decomposition. We conclude with the extension of this study to arbitrary marginal distributions and dependence measures with positive tail dependencies.
Keywords :
Bayes methods; parameter estimation; stochastic processes; uncertainty handling; Bayesian simulation replication algorithm; arbitrary marginal distributions; confidence interval; correlated inputs; mean performance estimate; multivariate normal distribution; output variance decomposition; parameter uncertainty; stochastic simulation; Bayesian methods; Correlation; Data models; Density functional theory; Stochastic processes; Uncertain systems; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Simulation Conference (WSC), Proceedings of the 2010 Winter
Conference_Location :
Baltimore, MD
ISSN :
0891-7736
Print_ISBN :
978-1-4244-9866-6
Type :
conf
DOI :
10.1109/WSC.2010.5679073
Filename :
5679073
Link To Document :
بازگشت