Title :
Adaptive double self-organizing map and its application in gene expression data
Author :
Ressom, H. ; Wang, D. ; Natarajan, P.
Author_Institution :
Dept. of Electr. & Comput. Eng., Maine Univ., Orono, ME, USA
Abstract :
This paper presents a novel clustering technique known as adaptive double self-organizing map (ADSOM). ADSOM has a flexible topology and perform clustering and cluster visualization simultaneously, thereby requiring no a priori knowledge about the number of clusters. ADSOM combines features of the popular self-organizing map (SOM) with two-dimensional position vectors, which serve as a visualization tool to accurately determine the number of clusters present in the data. ADSOM updates its free parameters during training and it allows convergence of its position vectors to a fairly consistent number of clusters provided that its initial number of nodes is greater than the expected number of clusters. A novel index is introduced based on hierarchical clustering of the final locations of position vectors. The index allows automatic detection of the number of clusters, thereby reducing human error that could be incurred from counting cluster visually. The reliance of ADSOM in identifying the number of clusters is proven by applying it to publicly available yeast gene expression data.
Keywords :
DNA; genetics; hierarchical systems; pattern clustering; self-organising feature maps; adaptive double self-organizing map; cluster detection; cluster visualization; hierarchical clustering; visualization tool; yeast gene expression data; Application software; Clustering algorithms; Convergence; Data visualization; Gene expression; Humans; Intelligent systems; Laboratories; Subspace constraints; Topology;
Conference_Titel :
Neural Networks, 2003. Proceedings of the International Joint Conference on
Print_ISBN :
0-7803-7898-9
DOI :
10.1109/IJCNN.2003.1223269