DocumentCode :
1916277
Title :
Fast and cycle-accurate modeling of a multicore processor
Author :
Khan, Asif ; Vijayaraghavan, Muralidaran ; Boyd-Wickizer, Silas ; Arvind
Author_Institution :
Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA, USA
fYear :
2012
fDate :
1-3 April 2012
Firstpage :
178
Lastpage :
187
Abstract :
An ideal simulator allows an architect to swiftly explore design alternatives and accurately determine their impact on performance. Design exploration requires simulators to be easily modifiable, and accurate performance estimates require detailed models. Unfortunately, detailed modeling not only impacts the ease with which a simulator can be modified, but also the speed at which it can be executed, resulting in fidelity being traded for simulation speed. Although FPGA-based simulators have dramatically higher speed than software simulators, sacrificing fidelity is still common. In this paper we present Arete, an FPGA-based processor simulator, which offers high performance along with accuracy and modifiability. We begin with a cycle-level specification of a multicore architecture which includes realistic in-order cores and detailed models of shared, coherent memory and on-chip network. We then describe how this specification is implemented faithfully and efficiently on FPGAs. Arete delivers a performance of up to 11 MIPS per core. We run a subset of the PARSEC benchmark suite on top of off-the-shelf SMP Linux, and achieve an average performance of 55 MIPS for an 8-core model.We also describe two significant architectural explorations: one involving three different branch predictors and the other requiring major modifications to the cache-coherence protocol.
Keywords :
Linux; computer architecture; field programmable gate arrays; multiprocessing systems; Arete; FPGA-based processor simulator; PARSEC benchmark suite; architectural exploration; branch predictor; cache-coherence protocol; cycle-accurate modeling; cycle-level specification; design exploration; multicore architecture; multicore processor; off-the-shelf SMP Linux; on-chip network; realistic in-order core; simulation speed; software simulator; Debugging; Field programmable gate arrays; Multicore processing; Random access memory; Registers; Tiles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Performance Analysis of Systems and Software (ISPASS), 2012 IEEE International Symposium on
Conference_Location :
New Brunswick, NJ
Print_ISBN :
978-1-4673-1143-4
Electronic_ISBN :
978-1-4673-1145-8
Type :
conf
DOI :
10.1109/ISPASS.2012.6189224
Filename :
6189224
Link To Document :
بازگشت