DocumentCode :
1916400
Title :
Principal component analysis for poultry tumor inspection using hyperspectral fluorescence imaging
Author :
Fletcher, John T. ; Kong, Seong G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Tennessee Univ., Knoxville, TN, USA
Volume :
1
fYear :
2003
fDate :
20-24 July 2003
Firstpage :
149
Abstract :
This paper presents detection of skin tumor on poultry carcasses using hyperspectral fluorescence images. Image samples are obtained from a hyperspectral imaging system that provides digital images of 65 spectral bands with wavelength ranging from 425 [nm] to 711 [nm]. The principal component analysis (PCA) technique finds an effective representation of spectral signature in a reduced dimensional feature space. A support vector machine (SVM) classifies the feature vectors and makes a decision whether each pixel falls in normal or tumor categories.
Keywords :
biomedical imaging; fluorescence; inspection; principal component analysis; skin; support vector machines; tumours; hyperspectral fluorescence imaging; hyperspectral imaging system; poultry tumor inspection; principal component analysis; skin tumor; support vector machine; Fluorescence; Humans; Hyperspectral imaging; Hyperspectral sensors; Inspection; Principal component analysis; Reflectivity; Skin neoplasms; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2003. Proceedings of the International Joint Conference on
ISSN :
1098-7576
Print_ISBN :
0-7803-7898-9
Type :
conf
DOI :
10.1109/IJCNN.2003.1223319
Filename :
1223319
Link To Document :
بازگشت