Title :
Opportunities for Scaling FET´s for Gigascale Integration (GSI)
Author :
Agrawal, Bhavna ; De, Vivek K. ; Meindl, James D.
Author_Institution :
Center for Integrated Electron., Rensselaer Polytech. Inst., Troy, NY, USA
Abstract :
Using two- and three dimensional analytical and numerical models, scaling limits derived from small-geometry degradation of subthreshold characteristics are compared for six different FET structures in bulk Si, SOI and GaAs technologies. For Si devices, the low impurity channel MOSFET can be scaled down to Lmin = 0.045μm and the dual gate SOI MOSFET to Lmin = 0.028μm. The GaAs MESFET can be scaled to Lmin = 0.13μm and the AlGaAs/GaAs MODFET to 0.095μm. The key physical effect which enables small values of Lmin is the relative strength of the coupling between the gate and channel charge distributions.
Keywords :
MOSFET; Schottky gate field effect transistors; aluminium compounds; elemental semiconductors; gallium arsenide; geometry; high electron mobility transistors; silicon; silicon-on-insulator; AlGaAs-GaAs; FET scaling; GSI; MESFET; MODFET; SOI MOSFET; Si; channel charge distribution; gigascale integration; impurity channel MOSFET; numerical model; scaling limit; size 0.028 mum; size 0.045 mum; size 0.095 mum; size 0.13 mum; small-geometry degradation; three dimensional analytical model; two-dimensional analytical model; Boundary conditions; FETs; Gallium arsenide; HEMTs; MESFETs; MODFETs; MOSFET circuits; Numerical models; Poisson equations; Threshold voltage;
Conference_Titel :
Solid State Device Research Conference, 1993. ESSDERC '93. 23rd European
Conference_Location :
Grenoble