Title :
Ultra-wideband CMOS-MEMS radio
Author :
Tiiliharju, Esa ; Koivisto, Tero ; Maunu, Janne ; Chekurovy, Nikolai ; Tittoneny, Ilkka
Author_Institution :
Dept. of Inf. Technol., Univ. of Turku, Turku, Finland
Abstract :
Current ultrawideband (UWB) radios have several unsolved issues in front-end performance including difficult and expensive clock synthesizer designs, and power hungry baseband functions. In fact, the expected breakthrough of the very useful UWB technology has stalled since realized high bitrate integrated radios are much too expensive in the sense that they dissipate a lot of DC power and that their implementations require large IC areas. To overcome these challenges, this research brings together the disciplines of electrical engineering (miniaturized radiocommunication devices) and physics (micro electro-mechanical systems MEMS) to create a combination of skills and know-how to produce new knowledge on complex interactions between CMOS and MEMS in RF receivers. These technologies are combined with the idea that for an extremely wideband signaling radio such as UWB, energy-efficient analog blocks should be maximally used. To implement these ideas, this research has three specific objectives: 1) MEMS resonators will be used to build a filtering interface for channel selection right at the antenna, 2) a low phase-noise 528-MHz MEMS frequency reference will be developed to feed novel fast-hopping clock-generation, and 3) analog baseband techniques such as a mixed-mode Viterbi decoder will be utilized for decoding the received signaling with minimized power dissipation.
Keywords :
CMOS analogue integrated circuits; Viterbi decoding; channel coding; micromechanical resonators; ultra wideband communication; wireless channels; CMOS; DC power; MEMS resonator; RF receiver; UWB; analog baseband technique; antenna; channel selection; clock synthesizer design; electrical engineering; energy-efficient analog block; fast-hopping clock-generation; filtering interface; low phase-noise; microelectro-mechanical system; miniaturized radiocommunication device; mixed-mode Viterbi decoder; physics; power hungry baseband function; ultrawideband radio; Baseband; Bit rate; Clocks; Decoding; Electrical engineering; Micromechanical devices; Physics; Radio frequency; Synthesizers; Ultra wideband technology;
Conference_Titel :
Ultra-Wideband, 2009. ICUWB 2009. IEEE International Conference on
Conference_Location :
Vancouver, BC
Print_ISBN :
978-1-4244-2930-1
Electronic_ISBN :
978-1-4244-2931-8
DOI :
10.1109/ICUWB.2009.5288715