DocumentCode :
1918063
Title :
Evolutionary computation for dynamic parameter optimisation of evolving connectionist systems for on-line prediction of time series with changing dynamics
Author :
Kasabov, Nikola ; Song, Qun ; Nishikanawa, I.
Author_Institution :
Knowledge Eng. & Discovery Res. Inst., Auckland Univ. of Technol., New Zealand
Volume :
1
fYear :
2003
fDate :
20-24 July 2003
Firstpage :
438
Abstract :
The paper describes a method of using evolutionary computation technique for parameter optimisation of evolving connectionist systems (ECOS) that operate in an online, life-long learning mode. ECOS evolve their structure and functionality from an incoming stream of data in either a supervised-, of/and in an unsupervised mode. The algorithm is illustrated on a case study of predicting a chaotic time-series that changes its dynamics over time. With the on-line parameter optimisation of ECOS, a faster adaptation and a better prediction is achieved. The method is practically applicable for real time applications.
Keywords :
evolutionary computation; forecasting theory; neural nets; optimisation; parameter estimation; real-time systems; time series; changing dynamics; data stream; evolutionary computation technique; evolving connectionist system; online prediction; parameter optimisation; real time application; supervised mode; time series; unsupervised mode; Chaos; Computer science; Evolutionary computation; Fuzzy neural networks; Knowledge engineering; Learning systems; Neural networks; Optimization methods; Paper technology; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2003. Proceedings of the International Joint Conference on
Conference_Location :
Portland, OR
ISSN :
1098-7576
Print_ISBN :
0-7803-7898-9
Type :
conf
DOI :
10.1109/IJCNN.2003.1223386
Filename :
1223386
Link To Document :
بازگشت