DocumentCode :
1919344
Title :
Adaptive-fuzzy logic control of robot manipulators
Author :
Commuri, S. ; Lewis, F.L.
Author_Institution :
Autom. & Robotics Res. Inst., Texas Univ., Arlington, TX, USA
Volume :
3
fYear :
1996
fDate :
22-28 Apr 1996
Firstpage :
2604
Abstract :
This paper presents a methodology for the design of fuzzy logic controllers (FLC) that guarantees prescribed performance for a general robotic system. It is shown that the proposed online learning algorithm learns the stabilizing membership functions (MFs) online from initial MFs that are selected using simple design criteria. From a practical standpoint, the controller structure leads to efficient implementation and fills a void that existed in the lack of repeatable design methodologies for FLC implementation
Keywords :
adaptive control; control system synthesis; fuzzy control; learning systems; manipulators; stability; adaptive-fuzzy logic control design; online learning algorithm; robot manipulators; stabilizing membership functions; Adaptive control; Automatic control; Control systems; Design methodology; Function approximation; Fuzzy logic; Fuzzy systems; Manipulators; Robot control; Robotics and automation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 1996. Proceedings., 1996 IEEE International Conference on
Conference_Location :
Minneapolis, MN
ISSN :
1050-4729
Print_ISBN :
0-7803-2988-0
Type :
conf
DOI :
10.1109/ROBOT.1996.506555
Filename :
506555
Link To Document :
بازگشت