DocumentCode :
1920144
Title :
Norm-Coarsened Ordering for Parallel Incomplete Cholesky Preconditioning
Author :
Booth, J.D.
Author_Institution :
Dept. of Comput. Sci. & Eng., Pennsylvania State Univ., University Park, PA, USA
fYear :
2012
fDate :
10-16 Nov. 2012
Firstpage :
1532
Lastpage :
1533
Abstract :
The ordering of a matrix vastly impact the convergence rate of precondition conjugate gradient method. Past ordering methods focus solely on a graph representation of the sparse matrix and do not give an inside into the convergence rate that is linked to the preconditioned eigenspectrum. This work attempt to investigate how numerical based ordering may produce a better preconditioned system in terms of faster convergence.
Keywords :
gradient methods; graph theory; matrix algebra; parallel processing; gradient method; graph representation; normcoarsened ordering; ordering methods; parallel incomplete Cholesky preconditioning; sparse matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:
Conference_Location :
Salt Lake City, UT
Print_ISBN :
978-1-4673-6218-4
Type :
conf
DOI :
10.1109/SC.Companion.2012.308
Filename :
6496092
Link To Document :
بازگشت