DocumentCode :
1922733
Title :
On-line Discriminative Feature Selection in Particle Filter Tracking
Author :
Liu, Yuan-Li ; Shieh, Chin-Shiuh
Author_Institution :
Dept. of Electron. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Kaohsiung, Taiwan
fYear :
2012
fDate :
26-28 Sept. 2012
Firstpage :
262
Lastpage :
267
Abstract :
This paper presents a particle filter for object tracking using the combination of shape and texture features. Local descriptors contribute to estimation by filtering out some irrelevant observations, making it more reliable. We introduces an online feature adaptation mechanism that enables to automatically select the best set of features in presence of time varying and complex background, occlusions, etc. Experimental results on real-would videos demonstrate the effectiveness of the proposed algorithm.
Keywords :
object tracking; particle filtering (numerical methods); tracking filters; local descriptors; object tracking; online discriminative feature selection; online feature adaptation mechanism; particle filter tracking; shape feature; texture feature; Technological innovation; Hausdorff distance; local binary pattern (LBP); particle filtr;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Innovations in Bio-Inspired Computing and Applications (IBICA), 2012 Third International Conference on
Conference_Location :
Kaohsiung
Print_ISBN :
978-1-4673-2838-8
Type :
conf
DOI :
10.1109/IBICA.2012.48
Filename :
6337675
Link To Document :
بازگشت