Title :
Asynchronous computation with molecular reactions
Author :
Jiang, Hua ; Riedel, Marc D. ; Parhi, Keshab K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA
Abstract :
Mass-action kinetics of chemical reaction networks (CRNs) is powerful to describe computations through transfers of chemical concentrations. Here we present methods for asynchronously implementing digital signal processing (DSP) operations such as filtering with CRNs. We first review an implementation of DSP operations using molecular reactions based on a three-phase transfer scheme. This is an example of a locally asynchronous, globally synchronous implementation. We then present a fully asynchronous method that transfers signals based on absence of other signals. We illustrate our methodology with the design of finite impulse response (FIR) filters. The computation is exact and independent of specific reaction rates. Although conceptual for the time being, the proposed methodology has potential applications in domains of synthetic biology such as biochemical sensing and drug delivery.
Keywords :
FIR filters; chemical engineering; chemical reactions; signal processing; CRN; DSP operations; FIR filters; asynchronous computation; chemical concentrations; chemical reaction networks; digital signal processing; finite impulse response filters; mass-action kinetics; molecular reactions; synthetic biology; Argon; Chemicals; DNA; Delay; Digital signal processing; Finite impulse response filter; Kinetic theory;
Conference_Titel :
Signals, Systems and Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
Print_ISBN :
978-1-4673-0321-7
DOI :
10.1109/ACSSC.2011.6190049