DocumentCode :
1929425
Title :
Performance of 2-D mixed autoregressive models for airborne radar STAP: KASSPER-aided analysis
Author :
Abramovich, Y.I. ; Rangaswamy, M. ; Johnson, B.A. ; Corbell, P.M. ; Spencer, N.K.
Author_Institution :
Surveillance & Reconnaissance Div. (ISRD), Defence Sci. & Technol. Organ. (DSTO), Edinburgh, SA
fYear :
2008
fDate :
26-30 May 2008
Firstpage :
1
Lastpage :
5
Abstract :
We analyze the performance of a recently described class of two-dimensional autoregressive parametric models for space-time adaptive processing (STAP) in airborne radars on the DARPA side-looking radar model known as KASSPER Dataset 1. We investigate the trade-offs between signal-to-interference-plus-noise ratio (SINR) degradation (with respect to the optimal clairvoyant receiver) due to the mismatch between the observed covariance matrix and its parametric model, and the degradation due to the limited training sample volume. The impact of ground-clutter inhomogeneity on parametric STAP performance is demonstrated, as well as the significant superiority of parametric STAP over the conventional loaded sample-matrix inversion (SMI) technique.
Keywords :
airborne radar; autoregressive processes; covariance matrices; radar clutter; radar signal processing; space-time adaptive processing; 2D mixed autoregressive model; DARPA side-looking radar model; KASSPER-aided analysis; airborne radar STAP; covariance matrix; ground-clutter inhomogeneity; parametric model; space-time adaptive processing; Airborne radar; Antenna arrays; Australia; Clutter; Covariance matrix; Electronic mail; Parametric statistics; Performance analysis; Radar antennas; Sensor arrays; Adaptive radar detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Radar Conference, 2008. RADAR '08. IEEE
Conference_Location :
Rome
ISSN :
1097-5659
Print_ISBN :
978-1-4244-1538-0
Electronic_ISBN :
1097-5659
Type :
conf
DOI :
10.1109/RADAR.2008.4720839
Filename :
4720839
Link To Document :
بازگشت