DocumentCode :
1930475
Title :
Super-resolution based on blind deconvolution using similarity of power spectra
Author :
Tanaka, Toshihisa ; Miyamoto, Ryo ; Chong, Rachel Mabanag
Author_Institution :
Tokyo Univ. of Agric. & Technol., Koganei, Japan
fYear :
2009
fDate :
Aug. 30 2009-Sept. 2 2009
Firstpage :
1
Lastpage :
7
Abstract :
Generally, blind super-resolution with unknown blurs is treated as an optimization problem. This involves a cost function, composed of terms accounting for changes in image and point spread function (PSF), which usually undergoes regularization due to the ill-posedness of the problem. In this paper, we introduce a novel regularization term for the PSF such that the spectral change in the image caused by degradation is also included. This is based on the fact that the presence of PSF in images affects the frequency component concentration. This cost function is optimized with respect to the image and the PSF in an alternating manner. Experiment results show that the proposed method is effective based on an objective evaluation method and that its PSF estimation accuracy is competitive in comparison with the recently proposed parametric method.
Keywords :
deconvolution; image resolution; optical transfer function; blind deconvolution; blind super resolution; cost function; frequency component concentration; image spectral change; point spread function; power spectra; Additive noise; Agriculture; Cameras; Cost function; Deconvolution; Degradation; Image resolution; Image restoration; Strontium; TV;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Distributed Smart Cameras, 2009. ICDSC 2009. Third ACM/IEEE International Conference on
Conference_Location :
Como
Print_ISBN :
978-1-4244-4620-9
Electronic_ISBN :
978-1-4244-4620-9
Type :
conf
DOI :
10.1109/ICDSC.2009.5289374
Filename :
5289374
Link To Document :
بازگشت