DocumentCode :
1932034
Title :
Mining battlefield information using ensemble classifiers
Author :
Xu, Xiansheng ; Wang, Tao ; Ouyang, Zhenzheng
Author_Institution :
Dept. 2, Nanjing Army Command Coll., Nanjing, China
Volume :
8
fYear :
2010
fDate :
9-11 July 2010
Firstpage :
506
Lastpage :
509
Abstract :
To help handle battlefield information superiority to decision superiority (i.e. to rapidly arrive at better decisions than adversaries can respond to), many scientific, technical and technological challenges must be addressed. The most critical of those are information fusion and management at different levels, communication. This paper decribes battlefield information as data streams and mining it using ensemble classifiers, and focusing on handling noisy and concept drift datas. Our theoretical and empirical study shows that our framework is superior and more robust to averaging ensemble for noisy battlefield information data streams.
Keywords :
data mining; decision making; military computing; pattern classification; battlefield information mining; concept drift datas; data mining; data streams; decision superiority; ensemble classifiers; information fusion; Classification algorithms; Database systems; Strontium; Support vector machines; Battlifildl information; data streams; ensemble classifiers;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-5537-9
Type :
conf
DOI :
10.1109/ICCSIT.2010.5563749
Filename :
5563749
Link To Document :
بازگشت