DocumentCode :
1932231
Title :
P-norm Semiparametric Regression Model
Author :
Xiong, Pan
Author_Institution :
China Univ. of Geosci., Wuhan
Volume :
5
fYear :
2007
fDate :
19-22 Aug. 2007
Firstpage :
2461
Lastpage :
2466
Abstract :
In this paper, using the kernel weight function, we obtain the parameter estimation of p-norm distribution in semi-parametric regression model, which is effective to decide the distribution of random errors. Under the assumption that the distribution of observations is unimodal and symmetry, this method can give the estimates of the parameters. Finally, two simulated adjustment problem are constructed to explain this method. The new method presented in this paper shows an effective way of solving the problem. The estimated values are nearer to their theoretical ones than those by least squares adjustment approach.
Keywords :
maximum likelihood estimation; normal distribution; random processes; regression analysis; kernel weight function; maximum likelihood adjustment; p-norm distribution; parameter estimation; random errors; semiparametric regression model; Cybernetics; Data processing; Geology; Kernel; Least squares approximation; Machine learning; Maximum likelihood estimation; Parameter estimation; Parametric statistics; Robustness; Kernel weight function; Maximum likelihood adjustment; P-norm distributions; Semi-parametric regression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2007 International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-0973-0
Electronic_ISBN :
978-1-4244-0973-0
Type :
conf
DOI :
10.1109/ICMLC.2007.4370560
Filename :
4370560
Link To Document :
بازگشت