DocumentCode :
1936995
Title :
Mahalanobis Ellipsoidal Learning Machine for One Class Classification
Author :
Wei, Xun-Kai ; Huang, Guang-Bin ; Li, Ying-Hong
Author_Institution :
Air Force Eng. Univ., Xian
Volume :
6
fYear :
2007
fDate :
19-22 Aug. 2007
Firstpage :
3528
Lastpage :
3533
Abstract :
In this paper, we propose a novel kernel Mahalanobis ellipsoidal learning machine for one class classification. We propose to incorporate with the sample covariance matrix information and thus utilize the Mahalanobis distance rather than Euclidean distance in standard support vector data description. We use the centered kernel matrix and the singular value decomposition method to estimate the inverse of the sample covariance matrix. To avoid the existence of zero eigenvalues of the sample covariance matrix in high-dimensional feature space, we also introduce an uncertainty model to address a robust optimization problem. We investigate the initial performances of Mahalanobis ellipsoidal learning machine using the UCI benchmark datasets.
Keywords :
covariance matrices; learning (artificial intelligence); learning systems; pattern classification; singular value decomposition; Mahalanobis distance; centered kernel matrix; kernel Mahalanobis ellipsoidal learning machine; one class classification; robust optimization problem; sample covariance matrix information; singular value decomposition; standard support vector data description; Covariance matrix; Cybernetics; Electronic mail; Euclidean distance; Kernel; Machine learning; Robustness; Singular value decomposition; Support vector machines; Uncertainty; Mahalanobis distance; One class classification; Reproducing kernel Hilbert space; Robust optimization; Sample covariance matrix; Singular value decomposition;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2007 International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-0973-0
Electronic_ISBN :
978-1-4244-0973-0
Type :
conf
DOI :
10.1109/ICMLC.2007.4370758
Filename :
4370758
Link To Document :
بازگشت