Title :
Automated transportation transfer detection using GPS enabled smartphones
Author :
Stenneth, Leon ; Thompson, Kenville ; Stone, Waldin ; Alowibdi, Jalal
Author_Institution :
Dept. of Comput. Sci., Univ. of Illinois, Chicago, IL, USA
Abstract :
Understanding the mobility of a traveller from mobile sensor data is an important area of work in context aware and ubiquitous computing. Given a multimodal GPS trace, we will identify where in the GPS trace the traveller changed transportation modes. For example, where in the GPS trace the traveller alight a bus and boards a train, or where did the client stop running and start walking. Using data mining schemes to understand mobility data, in conjunction with real world observations, we propose an algorithm to identify mobility transfer points automatically. We compared the proposed algorithm against the state of the art that is used in the previously proposed work. Evaluation on real world data collected from GPS enabled mobile phones indicate that the proposed algorithm is accurate, has a good coverage, and a good asymptotic run time complexity.
Keywords :
Global Positioning System; computational complexity; data mining; mobility management (mobile radio); smart phones; traffic engineering computing; transportation; ubiquitous computing; GPS enabled mobile phones; GPS enabled smart phones; automated transportation transfer detection; context aware computing; data mining schemes; mobile sensor data; mobility transfer point identification; multimodal GPS trace; time complexity; traveller changed transportation modes; ubiquitous computing; Acceleration; Accuracy; Complexity theory; Global Positioning System; Legged locomotion; Mobile communication; Transportation;
Conference_Titel :
Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Conference on
Conference_Location :
Anchorage, AK
Print_ISBN :
978-1-4673-3064-0
Electronic_ISBN :
2153-0009
DOI :
10.1109/ITSC.2012.6338603