DocumentCode :
1939470
Title :
Multi-objective optimization of an evaporator control system using surrogate modeling
Author :
Shah, M. F Nor ; Abdullah, S.S. ; Faruq, A.
Author_Institution :
Fac. of Electr. Eng., Univ. Teknol. Malaysia, Skudai, Malaysia
fYear :
2011
fDate :
25-27 Nov. 2011
Firstpage :
198
Lastpage :
203
Abstract :
This paper discussed the idea of using surrogate modeling to optimize a multi-objective problem which in this case are PID controllers of an evaporator system. The main emphasis of this approach is to approximate a set of controller parameters from a few sample and search for Pareto front. The Radial Basis Function Neural Network (RBFNN) used was able to give a good approximation to the Preto front of controller parameters and perform four times faster compare by using brute-force search approach.
Keywords :
Pareto optimisation; control system synthesis; heat exchangers; neurocontrollers; radial basis function networks; search problems; three-term control; PID controller; Pareto front approximation; RBFNN; brute-force search approach; controller parameters; design space; evaporator control system; heat exchanger; multiobjective optimization; radial basis function neural network; surrogate modeling; Approximation methods; Computational modeling; Heat engines; Heat transfer; Optimization; Water heating;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control System, Computing and Engineering (ICCSCE), 2011 IEEE International Conference on
Conference_Location :
Penang
Print_ISBN :
978-1-4577-1640-9
Type :
conf
DOI :
10.1109/ICCSCE.2011.6190522
Filename :
6190522
Link To Document :
بازگشت