DocumentCode :
1942504
Title :
Dynamic identification of robots with power model
Author :
Gautier, Maxime
Author_Institution :
CNRS, Nantes, France
Volume :
3
fYear :
1997
fDate :
20-25 Apr 1997
Firstpage :
1922
Abstract :
This paper presents a new approach to identify the minimum dynamic parameters of robots using least squares techniques (LS) and a power model. Theoretical analysis is carried out from a filtering point of view and clearly shows the superiority of the power model over the energy one and over the dynamic identification model which has been used to carry out a classical ordinary LS estimation and a new weighted LS estimation. These results are checked from comparing experimental identification of the dynamic parameters of a planar SCARA prototype robot
Keywords :
filtering theory; identification; least squares approximations; matrix algebra; robot dynamics; dynamic parameters; filtering; identification; least squares; matrix algebra; planar SCARA robot; power model; robot dynamics; Acceleration; Electronic mail; Filtering; Friction; Inverse problems; Lagrangian functions; Least squares methods; Robot kinematics; Solid modeling; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 1997. Proceedings., 1997 IEEE International Conference on
Conference_Location :
Albuquerque, NM
Print_ISBN :
0-7803-3612-7
Type :
conf
DOI :
10.1109/ROBOT.1997.619069
Filename :
619069
Link To Document :
بازگشت