DocumentCode :
1944846
Title :
Approximated Geodesic Updates with Principal Natural Gradients
Author :
Yang, Zhirong ; Laaksonen, Jorma
Author_Institution :
Helsinki Univ. of Technol., Espoo
fYear :
2007
fDate :
12-17 Aug. 2007
Firstpage :
1320
Lastpage :
1325
Abstract :
We propose a novel optimization algorithm which overcomes two drawbacks of Amari´s natural gradient updates for information geometry. First, prewhitening the tangent vectors locally converts a Riemannian manifold to an Euclidean space so that the additive parameter update sequence approximates geodesics. Second, we prove that dimensionality reduction of natural gradients is necessary for learning multidimensional linear transformations. Removal of minor components also leads to noise reduction and better computational efficiency. The proposed method demonstrates faster and more robust convergence in the simulations on recovering a Gaussian mixture of artificial data and on discriminative learning of ionosphere data.
Keywords :
Gaussian processes; differential geometry; gradient methods; learning (artificial intelligence); optimisation; Amari natural gradient; Euclidean space; Gaussian mixture; Riemannian manifold; dimensionality reduction; discriminative learning; geodesic update; information geometry; multidimensional linear transformations; optimization; principal natural gradients; tangent vectors; Computational efficiency; Computational modeling; Information geometry; Ionosphere; Multidimensional systems; Neural networks; Noise reduction; Optimization methods; Principal component analysis; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2007. IJCNN 2007. International Joint Conference on
Conference_Location :
Orlando, FL
ISSN :
1098-7576
Print_ISBN :
978-1-4244-1379-9
Electronic_ISBN :
1098-7576
Type :
conf
DOI :
10.1109/IJCNN.2007.4371149
Filename :
4371149
Link To Document :
بازگشت