DocumentCode
1945802
Title
Stochastic Gradient Algorithm for Multi-input Systems Based on the Auxiliary Model
Author
Liao, Yuwu ; Wang, Xianfang ; Ding, Rui Feng
Author_Institution
Dept. of Phys. & Electron. Inf. Technol., Xiangfan Univ., Xiangfan
Volume
1
fYear
2008
fDate
12-14 Dec. 2008
Firstpage
168
Lastpage
171
Abstract
This paper presents an auxiliary model based stochastic gradient parameter estimation algorithm for multi-input output-error systems by minimizing a quadratic cost function. The basic idea is to replace the unknown variables in the information vector with the outputs of an auxiliary model or estimated outputs and the analysis and simulation results indicate that the parameter estimates converge to their true values for persistent excitation input signals. The algorithm proposed has significant computational advantage over existing least squares identification algorithms. A simulation example is given.
Keywords
gradient methods; parameter estimation; stochastic processes; auxiliary model; information vector; multiinput output-error system; quadratic cost function; stochastic gradient parameter estimation algorithm; Bismuth; Computational modeling; Computer science; Least squares methods; Parameter estimation; Physics; Polynomials; Software algorithms; Software engineering; Stochastic systems; Stochastic gradient algorithm; auxiliary model; multi-input systems;
fLanguage
English
Publisher
ieee
Conference_Titel
Computer Science and Software Engineering, 2008 International Conference on
Conference_Location
Wuhan, Hubei
Print_ISBN
978-0-7695-3336-0
Type
conf
DOI
10.1109/CSSE.2008.1032
Filename
4721718
Link To Document