Title :
Design optimization on the heat transfer and mechanical reliability of High Brightness Light Emitting Diodes (HBLED) package
Author :
Gao, Shan ; Hong, Jupyo ; Shin, Sanghyun ; Lee, Yongki ; Choi, Seogmoon ; Yi, Sung
Author_Institution :
Central R&D Inst., Samsung Electro-Mech., Suwon
Abstract :
In this study, high brightness LED package is considered. Steady state heat transfer process analysis is firstly carried out using 3-D finite element method. Temperature distribution and thermal resistance of the package are then determined. The FEM results are evaluated by thermal resistance measurement on the package by T3STer system. In addition design study on the thermal performance of the packaging structure is also performed. The analysis results show that die attachment (solder material) plays the most important role in the thermal resistance of LED package. Thermal resistance of the package is mainly caused by the interfacial thermal resistances. It can be found out that AI2O3 isolation ring increases the thermal resistance of the package and pure Aluminum substrate achieves a better performance in the respect of thermal behavior of packaging designs. Mechanical reliability analysis has also been carried out. Failure of the package occurs in the anodized AI2O3 isolation ring during die bonding process due to the material defects of AI2O3 in the manufacturing process. 3D mechanical FEM is used to figure out the failure mechanism. Design optimization on the packaging structure is also performed to improve the mechanical reliability. A few new structure designs are proposed, analyzed and compared. Design with the best reliability among the candidates is chosen and the corresponding manufacturing processes are proposed.
Keywords :
finite element analysis; light emitting diodes; microassembling; semiconductor device packaging; semiconductor device reliability; temperature distribution; thermal resistance; 3-D finite element method; FEM; die bonding; heat transfer; high brightness LED package; high brightness light emitting diodes package; mechanical reliability; temperature distribution; thermal resistance; Artificial intelligence; Brightness; Design optimization; Finite element methods; Heat transfer; Light emitting diodes; Manufacturing processes; Packaging; Steady-state; Thermal resistance;
Conference_Titel :
Electronic Components and Technology Conference, 2008. ECTC 2008. 58th
Conference_Location :
Lake Buena Vista, FL
Print_ISBN :
978-1-4244-2230-2
Electronic_ISBN :
0569-5503
DOI :
10.1109/ECTC.2008.4550066