Title :
Advanced motion control by multi-sensor based disturbance observer
Author :
Irie, Kouhei ; Katsura, Seiichiro ; Ohishi, Kiyoshi
Author_Institution :
Dept. of Electr. Eng., Nagaoka Univ. of Technol., Niigata
Abstract :
Motion control has been widely used in industry applications. One of the key technologies of motion control is a disturbance observer, which quarries a disturbance torque of a motion system and realizes a robust acceleration control. The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1 Hz to more than 1 kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed multi-sensor based disturbance observer (MSDO) is superior to the conventional one. The MSDO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method
Keywords :
force control; motion control; observers; position control; sensors; torque control; acceleration sensor; advanced motion control; force control; infinity stiffness; multi-sensor based disturbance observer; position control; robust acceleration control; second order derivative; torque control; zero stiffness; Acceleration; Bandwidth; Control systems; Haptic interfaces; Industry applications; Motion control; Position control; Robust control; Torque control; Working environment noise;
Conference_Titel :
Advanced Motion Control, 2006. 9th IEEE International Workshop on
Conference_Location :
Istanbul
Print_ISBN :
0-7803-9511-1
DOI :
10.1109/AMC.2006.1631658