DocumentCode :
1949855
Title :
Application of Neural Networks to the Electroencephalogram Analysis for Epilepsy Detection
Author :
Golovko, Vladimir A. ; Bezobrazova, Svetlana V. ; Bezobrazov, Sergei V. ; Rubanau, Uladzimir S.
Author_Institution :
Brest State Tech. Univ., Brest
fYear :
2007
fDate :
12-17 Aug. 2007
Firstpage :
2707
Lastpage :
2711
Abstract :
Many techniques were used in order to detect and to predict epileptic seizures on the basis of electroencephalograms. One of the approaches for the prediction of the epileptic seizures is the use the chaos theory, namely determination largest Lyapunov´s exponent or correlation dimension of the scalp EEG signals. This paper presents the neural network technique for epilepsy detection. It is based on computing of the largest Lyapunov´s exponent. The results of experiments are discussed.
Keywords :
chaos; correlation methods; electroencephalography; medical signal detection; medical signal processing; neural nets; neurophysiology; EEG; Lyapunov exponent; chaos theory; correlation dimension; electroencephalogram analysis; epilepsy detection; neural network; Artificial intelligence; Biological neural networks; Chaos; Computer networks; Electroencephalography; Epilepsy; Neural networks; Nonlinear equations; Scalp; Signal processing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 2007. IJCNN 2007. International Joint Conference on
Conference_Location :
Orlando, FL
ISSN :
1098-7576
Print_ISBN :
978-1-4244-1379-9
Electronic_ISBN :
1098-7576
Type :
conf
DOI :
10.1109/IJCNN.2007.4371386
Filename :
4371386
Link To Document :
بازگشت