• DocumentCode
    1950374
  • Title

    Multidimensional rotations for quantization

  • Author

    Hung, Andy C. ; Meng, Teresa H Y

  • Author_Institution
    Inf. Syst. Lab., Stanford Univ., CA, USA
  • fYear
    1994
  • fDate
    29-31 Mar 1994
  • Firstpage
    32
  • Lastpage
    41
  • Abstract
    Laplacian and generalized Gaussian data arise in image and speech coding. Simple rotations of independent, identically distributed Laplacian and generalized Gaussian data in multiple dimensions can improve the granular and overload characteristics for quantization. In this paper, we describe the practical properties of multidimensional rotations for both scalar and lattice quantization and then apply them to image compression over noisy channels
  • Keywords
    analogue-digital conversion; data compression; encoding; image coding; random noise; speech coding; telecommunication channels; Laplacian data; Walsh-Hadamard transform; generalized Gaussian data; granular characteristics; image coding; image compression; independent identically distributed data; lattice quantization; multidimensional rotations; noisy channels; overload characteristics; scalar quantization; speech coding; vector quantisation; Filters; Gaussian distribution; Image coding; Laplace equations; Lattices; Multidimensional systems; Quantization; Random variables; Reflection; Speech coding;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Data Compression Conference, 1994. DCC '94. Proceedings
  • Conference_Location
    Snowbird, UT
  • Print_ISBN
    0-8186-5637-9
  • Type

    conf

  • DOI
    10.1109/DCC.1994.305910
  • Filename
    305910