Title :
The Sample Complexity of Search Over Multiple Populations
Author :
Malloy, Matthew L. ; Gongguo Tang ; Nowak, Robert D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Wisconsin, Madison, WI, USA
Abstract :
This paper studies the sample complexity of searching over multiple populations. We consider a large number of populations, each corresponding to either distribution P0 or P1. The goal of the search problem studied here is to find one population corresponding to distribution P1 with as few samples as possible. The main contribution is to quantify the number of samples needed to correctly find one such population. We consider two general approaches: nonadaptive sampling methods, which sample each population a predetermined number of times until a population following P1 is found, and adaptive sampling methods, which employ sequential sampling schemes for each population. We first derive a lower bound on the number of samples required by any sampling scheme. We then consider an adaptive procedure consisting of a series of sequential probability ratio tests, and show it comes within a constant factor of the lower bound. We give explicit expressions for this constant when samples of the populations follow Gaussian and Bernoulli distributions. An alternative adaptive scheme is discussed which does not require full knowledge of P1, and comes within a constant factor of the optimal scheme. For comparison, a lower bound on the sampling requirements of any nonadaptive scheme is presented.
Keywords :
Gaussian distribution; computational complexity; information theory; sampling methods; Bernoulli distribution; Gaussian distribution; adaptive procedure; alternative adaptive scheme; nonadaptive sampling method; sample complexity; search over multiple population; sequential probability ratio test; sequential sampling scheme; Complexity theory; Indexes; Reliability; Search problems; Signal to noise ratio; Sociology; Statistics; Biased coin; CUSUM procedure; SPRT; multiarmed bandit; quickest search; rare events; sequential analysis; sequential thresholding; sparse recovery; spectrum sensing;
Journal_Title :
Information Theory, IEEE Transactions on
DOI :
10.1109/TIT.2013.2258071