DocumentCode :
1959976
Title :
Piezoelectric crystal composite for high frequency ultrasound application
Author :
Tian, Jian ; Meneou, Kevin ; Stone, Brandon ; Han, Pengdi
Author_Institution :
H.C. Mater. Corp., Bolingbrook, IL, USA
fYear :
2010
fDate :
11-14 Oct. 2010
Firstpage :
65
Lastpage :
67
Abstract :
Electromechanical coupling coefficient of piezoelectric materials determines the energy conversion efficiency between electrical and acoustic energies and vice versa. A high electromechanical coupling coefficient is essential to the performance of an ultrasound transducer. High frequency piezoelectric single crystal 1-3 composite was fabricated using etch-and-fill method. Crystal composite has superior piezoelectric properties compared to the monolithic single crystals. In addition, piezoelectric composites using PMN-PT binary crystal and PIN-PMN-PT ternary crystal were fabricated, with coupling coefficient greater than 0.8. Ternary piezoelectric crystals PIN-PMN-PT have improved thermal and electrical stability compared to the binary PMN-PT. Such improvements are useful especially for high frequency applications.
Keywords :
biomedical ultrasonics; electromechanical effects; lead compounds; piezoelectric materials; piezoelectric transducers; ultrasonic transducers; PIN-PMN-PT ternary crystal; PMN-PT binary crystal; Pb(In0.5Nb0.5)O3-Pb(Mg0.33Nb0.66)O3-PbTiO3; Pb(Mg0.33Nb0.66)O3-PbTiO3; acoustic energy; electrical energy; electromechanical coupling coefficient; energy conversion efficiency; etch-and-fill method; high frequency piezoelectric single crystal 1-3 composite; high frequency ultrasound application; piezoelectric materials; ultrasound transducer; Acoustics; Couplings; Crystals; Impedance; Piezoelectric materials; Transducers; Ultrasonic imaging;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Ultrasonics Symposium (IUS), 2010 IEEE
Conference_Location :
San Diego, CA
ISSN :
1948-5719
Print_ISBN :
978-1-4577-0382-9
Type :
conf
DOI :
10.1109/ULTSYM.2010.5935822
Filename :
5935822
Link To Document :
بازگشت