DocumentCode :
1961484
Title :
Recursive nonlinear estimation of random parameter AR models with Poisson observations
Author :
Evans, Jamie S. ; Krishnamurthy, Vikram
Author_Institution :
Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
Volume :
5
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
5042
Abstract :
We derive exact filters for the state of a doubly stochastic AR process with parameters which vary according to a nonlinear function of a Gauss-Markov process. The observations consist of a discrete time Poisson process with rate a positive function of the Gauss-Markov process. The dimension of the sufficient statistic increases linearly with the number of observed events
Keywords :
Markov processes; autoregressive processes; filtering theory; observers; recursive estimation; Gauss-Markov process; Poisson observations; discrete time Poisson process; doubly stochastic AR process; exact filters; random parameter AR models; recursive nonlinear estimation; sufficient statistic; Filters; Gaussian processes; Markov processes; Parameter estimation; Position measurement; Recursive estimation; State estimation; Statistics; Stochastic processes; Target tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.649860
Filename :
649860
Link To Document :
بازگشت