• DocumentCode
    1966211
  • Title

    Goal-Oriented Error Estimates for hp-Adaptive Solutions of the Time-Harmonic Maxwell´s Equations

  • Author

    Ingelström, Pär ; Hill, Volker ; Dyczij-Edlinger, Romanus

  • Author_Institution
    Lehrstuhl fur Theor. Elektrotechnik, Univ. des Saarlandes, Saarbrucken
  • fYear
    0
  • fDate
    0-0 0
  • Firstpage
    396
  • Lastpage
    396
  • Abstract
    We present two kinds of goal-oriented error estimates for finite element (FE) solutions of the vector Helmholtz equation on tetrahedral meshes. The error estimates are based on the dual-weighted residual (DWR) method together with hierarchical basis functions and hierarchical grids, respectively. The purpose of the two estimates is to estimate the effects of p-refinement and h-refinement, respectively. Together this gives information to determine not only which elements to refine in an iterative refinement process, but also whether these should be p-refined (increasing polynomial order p) or h-refined (reducing element size h by dividing the element into smaller elements)
  • Keywords
    Helmholtz equations; Maxwell equations; error analysis; finite element analysis; harmonic analysis; dual-weighted residual method; finite element solutions; goal-oriented error estimation; hierarchical basis functions; hp-adaptive solutions; iterative refinement process; tetrahedral meshes; time-harmonic Maxwell equations; vector Helmholtz equation; Boundary conditions; Cavity resonators; Error analysis; Finite element methods; Maxwell equations; Polynomials; Scattering parameters; Symmetric matrices; Testing; Transmission line matrix methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electromagnetic Field Computation, 2006 12th Biennial IEEE Conference on
  • Conference_Location
    Miami, FL
  • Print_ISBN
    1-4244-0320-0
  • Type

    conf

  • DOI
    10.1109/CEFC-06.2006.1633186
  • Filename
    1633186