DocumentCode :
1966211
Title :
Goal-Oriented Error Estimates for hp-Adaptive Solutions of the Time-Harmonic Maxwell´s Equations
Author :
Ingelström, Pär ; Hill, Volker ; Dyczij-Edlinger, Romanus
Author_Institution :
Lehrstuhl fur Theor. Elektrotechnik, Univ. des Saarlandes, Saarbrucken
fYear :
0
fDate :
0-0 0
Firstpage :
396
Lastpage :
396
Abstract :
We present two kinds of goal-oriented error estimates for finite element (FE) solutions of the vector Helmholtz equation on tetrahedral meshes. The error estimates are based on the dual-weighted residual (DWR) method together with hierarchical basis functions and hierarchical grids, respectively. The purpose of the two estimates is to estimate the effects of p-refinement and h-refinement, respectively. Together this gives information to determine not only which elements to refine in an iterative refinement process, but also whether these should be p-refined (increasing polynomial order p) or h-refined (reducing element size h by dividing the element into smaller elements)
Keywords :
Helmholtz equations; Maxwell equations; error analysis; finite element analysis; harmonic analysis; dual-weighted residual method; finite element solutions; goal-oriented error estimation; hierarchical basis functions; hp-adaptive solutions; iterative refinement process; tetrahedral meshes; time-harmonic Maxwell equations; vector Helmholtz equation; Boundary conditions; Cavity resonators; Error analysis; Finite element methods; Maxwell equations; Polynomials; Scattering parameters; Symmetric matrices; Testing; Transmission line matrix methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electromagnetic Field Computation, 2006 12th Biennial IEEE Conference on
Conference_Location :
Miami, FL
Print_ISBN :
1-4244-0320-0
Type :
conf
DOI :
10.1109/CEFC-06.2006.1633186
Filename :
1633186
Link To Document :
بازگشت