• DocumentCode
    1968168
  • Title

    Automatic ore image segmentation using mean shift and watershed transform

  • Author

    Amankwah, Anthony ; Aldrich, Chris

  • Author_Institution
    Process Eng. Dept., Univ. of Stellenbosch, Stellenbosch, South Africa
  • fYear
    2011
  • fDate
    19-20 April 2011
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    In this paper, we present a novel method for segmenting ore images specifically for estimating the size distribution of ore material on conveyer belt. The segmentation system uses the mean shift and watershed algorithm. The mean shift algorithm is used to identify pixel clusters of particular modes of the probability density function of the image data. The pixel clusters are then used to generate markers for the watershed transform and shadow areas in ore image. Experimental results show that the proposed algorithm is not only faster than the standard methods but also more robust.
  • Keywords
    conveyors; image segmentation; mineral processing; minerals; particle size; probability; transforms; automatic ore image segmentation; conveyer belt; image data; mean shift algorithm; ore material; pixel clusters; probability density function; segmentation system; size distribution; standard methods; watershed transform; Algorithm design and analysis; Clustering algorithms; Estimation; Image segmentation; Pixel; Software algorithms; Transforms; Mean Shift; Ore size distribution estimation; Watershed Transform;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Radioelektronika (RADIOELEKTRONIKA), 2011 21st International Conference
  • Conference_Location
    Brno
  • Print_ISBN
    978-1-61284-325-4
  • Type

    conf

  • DOI
    10.1109/RADIOELEK.2011.5936391
  • Filename
    5936391