• DocumentCode
    1968990
  • Title

    Model parameters selection for SVM classification using Particle Swarm Optimization

  • Author

    Hric, Martin ; Chmulík, Michal ; Jarina, Roman

  • Author_Institution
    Dept. of Telecommun. & Multimedia, Univ. of Zilina, Žilina, Slovakia
  • fYear
    2011
  • fDate
    19-20 April 2011
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    Support Vector Machine (SVM) classification requires set of one or more parameters and these parameters have significant influence on classification precision and generalization ability. Searching for suitable model parameters invokes great computational load, which accentuates with increasing size of the dataset and with amount of the parameters being optimized. In this paper we present and compare various SVM parameters selection techniques, namely grid search, Particle Swarm Optimization (PSO) and Genetic Algorithm (GA). Experiments conducting over two datasets show promising results with PSO and GA optimization technique.
  • Keywords
    generalisation (artificial intelligence); genetic algorithms; particle swarm optimisation; pattern classification; support vector machines; SVM classification; classification precision; generalization ability; genetic algorithm; grid search; model parameters selection; particle swarm optimization; support vector machine classification; Accuracy; Genetic algorithms; Kernel; Optimization; Particle swarm optimization; Support vector machines; Training; GA; PSO; SVM; classification; model selection;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Radioelektronika (RADIOELEKTRONIKA), 2011 21st International Conference
  • Conference_Location
    Brno
  • Print_ISBN
    978-1-61284-325-4
  • Type

    conf

  • DOI
    10.1109/RADIOELEK.2011.5936432
  • Filename
    5936432