• DocumentCode
    1970040
  • Title

    On the application of Cramer-Rao type lower bounds for constrained estimation

  • Author

    Gorman, John D. ; Hero, Alfred O.

  • Author_Institution
    Environ. Res. Inst. of Michigan, Ann Arbor, MI, USA
  • fYear
    1991
  • fDate
    14-17 Apr 1991
  • Firstpage
    1333
  • Abstract
    Using limiting forms of the Chapman-Robbins (1951) version of the Barankin bound, a study is made of the effect of parameter constraints on local lower bounds on estimator covariance. One such limiting form is the Cramer-Rao bound, for which constraints are seen to induce an oblique projection of the columns of the inverse Fisher information matrix onto a linear subspace tangent to the parameter constraint set. Another limiting form is the Bhattacharyya bound, which is defined in terms of higher-order Fisher information. For the Bhattacharyya bound, parameter constraints induce a transformation of the higher-order Fisher information that depends on the tangent space projection operator and its derivatives
  • Keywords
    information theory; parameter estimation; Barankin bound; Bhattacharyya bound; Cramer-Rao lower bound; constrained estimation; estimator covariance; higher-order Fisher information; inverse Fisher information matrix; linear subspace tangent; oblique projection; parameter constraints; tangent space projection operator; Chromium; Covariance matrix; Gaussian processes; Multidimensional systems; Reduced order systems; Subspace constraints; Testing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on
  • Conference_Location
    Toronto, Ont.
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-0003-3
  • Type

    conf

  • DOI
    10.1109/ICASSP.1991.150659
  • Filename
    150659