DocumentCode :
1975114
Title :
Projective space codes for the injection metric
Author :
Khaleghi, Azadeh ; Kschischang, Frank R.
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON
fYear :
2009
fDate :
13-15 May 2009
Firstpage :
9
Lastpage :
12
Abstract :
In the context of error control in random linear network coding, it is useful to construct codes that comprise well-separated collections of subspaces of a vector space over a finite field. In this paper, the metric used is the so-called ldquoinjection distance,rdquo introduced by Silva and Kschischang. A Gilbert-Varshamov bound for such codes is derived. Using the code-construction framework of Etzion and Silberstein, new non-constant-dimension codes are constructed; these codes contain more codewords than comparable codes designed for the subspace metric.
Keywords :
Galois fields; error correction codes; linear codes; matrix algebra; random codes; vectors; Gilbert-Varshamov bound; error control; finite field; injection distance metric; matrix algebra; nonconstant dimension code construction; projective space code; random linear network coding; vector space; Algorithm design and analysis; Chromium; Error correction; Extraterrestrial measurements; Galois fields; Hamming distance; Network coding; Reed-Solomon codes; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2009. CWIT 2009. 11th Canadian Workshop on
Conference_Location :
Ottawa, ON
Print_ISBN :
978-1-4244-3400-8
Electronic_ISBN :
978-1-4244-3401-5
Type :
conf
DOI :
10.1109/CWIT.2009.5069509
Filename :
5069509
Link To Document :
بازگشت