• DocumentCode
    1980384
  • Title

    Quadriceps muscle models using fuzzy logic and ANFIS

  • Author

    Salleh, S.M. ; Jailani, R. ; Tokhi, M.O.

  • Author_Institution
    Neuromuscular Rehabilitation Res. Group, Univ. Teknol. MARA Malaysia, Shah Alam, Malaysia
  • fYear
    2013
  • fDate
    19-20 Aug. 2013
  • Firstpage
    406
  • Lastpage
    410
  • Abstract
    This paper presents a development of quadriceps muscle models using ANFIS and Fuzzy Logic based on Functional Electrical Stimulation (FES). The models inputs parameter consists of stimulation frequency, pulse width, and sampling time are used to predict quadriceps output torque. The muscle models developed are then validate with the clinical data to evaluate the accuracy of the torque output predicted with the identified parameters. In this study, Fuzzy Logic muscle model gives better performance representing quadriceps muscle model.
  • Keywords
    fuzzy logic; fuzzy neural nets; inference mechanisms; medical computing; muscle; ANFIS; FES; functional electrical stimulation; fuzzy logic; pulse width; quadriceps muscle models; quadriceps output torque prediction; sampling time; stimulation frequency; Biological system modeling; Data models; Force; Fuzzy logic; Mathematical model; Muscles; Neuromuscular stimulation; ANFIS; Functional Electrical Stimulation (FES); Fuzzy Logic; Quadriceps Muscle Model;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    System Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on
  • Conference_Location
    Shah Alam
  • Print_ISBN
    978-1-4799-1028-1
  • Type

    conf

  • DOI
    10.1109/ICSEngT.2013.6650209
  • Filename
    6650209