DocumentCode
1980384
Title
Quadriceps muscle models using fuzzy logic and ANFIS
Author
Salleh, S.M. ; Jailani, R. ; Tokhi, M.O.
Author_Institution
Neuromuscular Rehabilitation Res. Group, Univ. Teknol. MARA Malaysia, Shah Alam, Malaysia
fYear
2013
fDate
19-20 Aug. 2013
Firstpage
406
Lastpage
410
Abstract
This paper presents a development of quadriceps muscle models using ANFIS and Fuzzy Logic based on Functional Electrical Stimulation (FES). The models inputs parameter consists of stimulation frequency, pulse width, and sampling time are used to predict quadriceps output torque. The muscle models developed are then validate with the clinical data to evaluate the accuracy of the torque output predicted with the identified parameters. In this study, Fuzzy Logic muscle model gives better performance representing quadriceps muscle model.
Keywords
fuzzy logic; fuzzy neural nets; inference mechanisms; medical computing; muscle; ANFIS; FES; functional electrical stimulation; fuzzy logic; pulse width; quadriceps muscle models; quadriceps output torque prediction; sampling time; stimulation frequency; Biological system modeling; Data models; Force; Fuzzy logic; Mathematical model; Muscles; Neuromuscular stimulation; ANFIS; Functional Electrical Stimulation (FES); Fuzzy Logic; Quadriceps Muscle Model;
fLanguage
English
Publisher
ieee
Conference_Titel
System Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on
Conference_Location
Shah Alam
Print_ISBN
978-1-4799-1028-1
Type
conf
DOI
10.1109/ICSEngT.2013.6650209
Filename
6650209
Link To Document