Title :
Bilateral Teleoperation with Different Configurations using Interaction Mode Control
Author :
Katsura, Seiichiro ; Suzuyama, Toshiyuki ; Ohishi, Kiyoshi
Author_Institution :
Nagaoka Univ. of Technol., Niigata
Abstract :
The paper realizes a bilateral teleoperation system considering different configurations. The haptic devices used in this paper are based on three master systems and one slave system. Each master system has one degree of freedom (DOF); and the slave system has three DOF. The conventional coordinate transformation with respect to the Cartesian coordinate system is not always suitable for dexterous tasks including grasping motion. The paper introduces a bilateral teleoperation with spatial mode transformation, which is corresponding to human\´s task motions. The spatial modes are abstracted by using an interaction mode control. The interaction mode control decomposes the bilateral teleoperation system into three decoupled modes; "translational", "rotating", and "grasping" motions. Thus the problems for motion integration of bilateral teleoperation system with different configurations are solved to design each bilateral controller with respect to the spatial mode coordinate system. Furthermore, the proposed system is designed based on acceleration control to realize both the force servoing and the position regulator for the "law of action and reaction" in remote environment simultaneously. As a result, a complicated task for the slave system is easily realized by three master systems with vivid force feedback. The experimental results show viability of the proposed method.
Keywords :
acceleration control; motion control; telerobotics; Cartesian coordinate system; DOF; acceleration control; bilateral teleoperation; degree of freedom; grasping motions; haptic devices; interaction mode control; rotating motions; spatial mode coordinate system; translational motions; Acceleration; Control systems; Force control; Force feedback; Grasping; Haptic interfaces; Humans; Impedance; Master-slave; Motion control;
Conference_Titel :
Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on
Conference_Location :
Vigo
Print_ISBN :
978-1-4244-0754-5
Electronic_ISBN :
978-1-4244-0755-2
DOI :
10.1109/ISIE.2007.4375114