DocumentCode :
1986721
Title :
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
Author :
Imoto, Seiya ; Higuchi, Tomoyuki ; Goto, Takao ; Tashiro, Kousuke ; Kuhara, Satoru ; Miyano, Satoru
Author_Institution :
Human Genome Center, Tokyo Univ., Japan
fYear :
2003
fDate :
11-14 Aug. 2003
Firstpage :
104
Lastpage :
113
Abstract :
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Unfortunately, microarray data do not contain enough information for constructing gene networks accurately in many cases. Our method adds biological knowledge to the estimation method of gene networks under a Bayesian statistical framework, and also controls the trade-off between microarray information and biological knowledge automatically. We conduct Monte Carlo simulations to show the effectiveness of the proposed method. We analyze Saccharomyces cerevisiae gene expression data as an application.
Keywords :
DNA; Monte Carlo methods; arrays; belief networks; biochemistry; biocybernetics; biology computing; genetics; molecular biophysics; proteins; Bayesian networks; Bayesian statistical framework; Monte Carlo simulations; Saccharomyces cerevisiae gene expression data; binding site information; biological knowledge; gene network estimation; microarray gene expression data; protein-DNA interactions; protein-protein interactions; statistical method; Bayesian methods; Bioinformatics; Biological control systems; Biological system modeling; Gene expression; Genetics; Genomics; Humans; Mathematics; Proteins;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Bioinformatics Conference, 2003. CSB 2003. Proceedings of the 2003 IEEE
Print_ISBN :
0-7695-2000-6
Type :
conf
DOI :
10.1109/CSB.2003.1227309
Filename :
1227309
Link To Document :
بازگشت