• DocumentCode
    1987992
  • Title

    A combinational digital logic approach to STDP

  • Author

    Cassidy, Andrew ; Andreou, Andreas G. ; Georgiou, Julius

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
  • fYear
    2011
  • fDate
    15-18 May 2011
  • Firstpage
    673
  • Lastpage
    676
  • Abstract
    Spike Timing Dependant Plasticity (STDP) is a biologically-based Hebbian reinforcement learning rule for the unsupervised training of synaptic weights in spiking neural networks. We present a low complexity synthetic implementation of STDP using basic combinational digital logic gates. This approach attains comparable results to more complex implementations while utilizing only a fraction of the area. We use our STDP approach to replicate the experimental results of a balanced excitation experiment.
  • Keywords
    Hebbian learning; combinational circuits; logic gates; neural nets; unsupervised learning; Hebbian reinforcement learning rule; STDP; balanced excitation; combinational digital logic gates; spike timing dependant plasticity; spiking neural networks; synaptic weights; unsupervised training; Complexity theory; Convolution; Encoding; Neurons; Shift registers; Table lookup; Timing;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems (ISCAS), 2011 IEEE International Symposium on
  • Conference_Location
    Rio de Janeiro
  • ISSN
    0271-4302
  • Print_ISBN
    978-1-4244-9473-6
  • Electronic_ISBN
    0271-4302
  • Type

    conf

  • DOI
    10.1109/ISCAS.2011.5937655
  • Filename
    5937655