DocumentCode :
1995575
Title :
Maximal causality analysis
Author :
Schneider, Klaus ; Brandt, Jens ; Schuele, Tobias ; Tuerk, Thomas
Author_Institution :
Dept. of Comput. Sci., Kaiserslautern Univ., Germany
fYear :
2005
fDate :
7-9 June 2005
Firstpage :
106
Lastpage :
115
Abstract :
Perfectly synchronous systems immediately react to the inputs of their environment, which may lead to so-called causality cycles between actions and their trigger conditions. Algorithms to analyze the consistency of such cycles usually extend data types by an additional value to explicitly indicate unknown values. In particular, Boolean functions are thereby extended to ternary functions. However, a Boolean function usually has several ternary extensions, and the result of the causality analysis depends on the chosen ternary extension. In this paper, we show that there always is a maximal ternary extension that allows one to solve as many causality problems as possible. Moreover, we elaborate the relationship to hazard elimination in hardware circuits, and finally show how the maximal ternary extension of a Boolean function can be efficiently computed by means of binary decision diagrams.
Keywords :
Boolean functions; causality; hardware description languages; synchronous machines; Boolean functions; binary decision diagrams; causality cycles; hardware circuits; hazard elimination; maximal causality analysis; maximal ternary extension; perfectly synchronous systems; Algorithm design and analysis; Boolean functions; Computer science; Data structures; Delay; Equations; Hardware; Hazards; Logic circuits; Multivalued logic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Application of Concurrency to System Design, 2005. ACSD 2005. Fifth International Conference on
ISSN :
1550-4808
Print_ISBN :
0-7695-2363-3
Type :
conf
DOI :
10.1109/ACSD.2005.24
Filename :
1508135
Link To Document :
بازگشت