DocumentCode :
1996600
Title :
Visualization, clustering and classification of multidimensional astronomical data
Author :
Staiano, Antonino ; Ciaramella, Angelo ; Vinco, Lara De ; Donalek, Ciro ; Longo, Giuseppe ; Raiconi, Giancarlo ; Tagliaferri, Roberto ; Amato, Roberto ; Mondo, Carmine Del ; Mangano, Giuseppe ; Miele, Gennaro
Author_Institution :
Dipt. di Matematica ed Informatica, Salerno Univ., Fisciano, Italy
fYear :
2005
fDate :
4-6 July 2005
Firstpage :
141
Lastpage :
146
Abstract :
Due to the recent technological advances, data mining in massive data sets has evolved as a crucial research field for many if not all areas of research: from astronomy to high energy physics, to genetics etc. In this paper we discuss an implementation of the Probabilistic Principal Surfaces (PPS) which was developed within the framework of the AstroNeural collaboration. PPS are a nonlinear latent variable model which may be regarded as a complete mathematical framework to accomplish some fundamental data mining activities such as: visualization, clustering and classification of high dimensional data. The effectiveness of the proposed model is exemplified referring to a complex astronomical data set.
Keywords :
astronomy computing; data mining; data visualisation; pattern classification; pattern clustering; probability; very large databases; AstroNeural collaboration; Probabilistic Principal Surfaces; complex astronomical data set; data classification; data clustering; data mining; data visualization; high dimensional data; massive data sets; multidimensional astronomical data; nonlinear latent variable model; Astronomy; Collaboration; Data analysis; Data mining; Data visualization; Genetics; Humans; Multidimensional systems; Space technology; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Architecture for Machine Perception, 2005. CAMP 2005. Proceedings. Seventh International Workshop on
Print_ISBN :
0-7695-2255-6
Type :
conf
DOI :
10.1109/CAMP.2005.54
Filename :
1508177
Link To Document :
بازگشت