DocumentCode :
1998030
Title :
Model reference learning control for non-linear systems
Author :
Narushima, M. ; Itamiya, K. ; Shin, S.
Author_Institution :
Tsukuba Univ., Ibaraki, Japan
fYear :
1993
fDate :
15-16 Jul 1993
Firstpage :
128
Lastpage :
133
Abstract :
In this paper, we propose a model reference learning control (MRLC) for nonlinear SISO plants where trials can do repeatedly from a same initial condition. It is step by step accomplished through off-line learning trials, not learning control input, but estimating optimal values of adjustable functions in feedback controller using input and output data. The only a priori information needed is the relative degree between input and output. Viability of the proposed control system is shown by a simple numerical simulation
Keywords :
feedback; intelligent control; learning systems; nonlinear control systems; feedback controller; input-output data; model reference learning control; nonlinear SISO plants; nonlinear control systems; offline learning; Adaptive control; Control system synthesis; Control systems; Filters; Nonlinear control systems; Numerical simulation; Optimal control; Polynomials; Q measurement; Size measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Motion Control Proceedings, 1993., Asia-Pacific Workshop on Advances in
Print_ISBN :
0-7803-1223-6
Type :
conf
DOI :
10.1109/APWAM.1993.316202
Filename :
316202
Link To Document :
بازگشت