DocumentCode :
1998095
Title :
Orthogonalization on a General Purpose Graphics Processing Unit with Double Double and Quad Double Arithmetic
Author :
Verschelde, Jan ; Yoffe, Gideon
Author_Institution :
Dept. of Math., Stat., & Comput. Sci., Univ. of Illinois at Chicago, Chicago, IL, USA
fYear :
2013
fDate :
20-24 May 2013
Firstpage :
1373
Lastpage :
1380
Abstract :
Our problem is to accurately solve linear system son a general purpose graphics processing unit with double double and quad double arithmetic. The linear systems originate from the application of Newton´s method on polynomial systems. Newton´s method is applied as a corrector in a path tracking method, so the linear systems are solved in sequence and not simultaneously. One solution path may require the solution of thousands of linear systems. In previous work we reported good speedups with our implementation to evaluate and differentiate polynomial systems on the NVIDIA Tesla C2050. Although the cost of evaluation and differentiation often dominates the cost of linear system solving in Newton´s method, because of the limited bandwidth of the communication between CPU and GPU, we cannot afford to send the linear system to the CPU for solving during path tracking. Because of large degrees, the Jacobian matrix may contain extreme values, requiring extended precision, leading to a significant overhead. This overhead of multiprecision arithmetic is our main motivation to develop a massively parallel algorithm. To allow over determined linear systems we solve linear systems in the least squares sense, computing the QR decomposition of the matrix by the modified Gram-Schmidt algorithm. We describe our implementation of the modified Gram-Schmidt orthogonalization method using double double and quad double arithmetic for GPUs. Our experimental results on the NVIDIA Tesla C2050 and K20Cshow that the achieved speedups are sufficiently high to compensate for the overhead of one extra level of precision.
Keywords :
Jacobian matrices; Newton method; graphics processing units; parallel algorithms; Jacobian matrix; NVIDIA Tesla C2050; Newton´s method; QR decomposition; double double arithmetic; general purpose graphics processing unit; linear systems; modified Gram-Schmidt orthogonalization method; multiprecision arithmetic; parallel algorithm; path tracking method; polynomial systems; quad double arithmetic; Graphics processing units; Instruction sets; Jacobian matrices; Kernel; Linear systems; Polynomials; Vectors; double double arithmetic; general purpose graphics processing unit (GPU); massively parallel algorithm; modified Gram-Schmidt method; orthogonalization; quad double arithmetic; quality up;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International
Conference_Location :
Cambridge, MA
Print_ISBN :
978-0-7695-4979-8
Type :
conf
DOI :
10.1109/IPDPSW.2013.189
Filename :
6651030
Link To Document :
بازگشت