DocumentCode :
200
Title :
Maximum Likelihood Estimation from Uncertain Data in the Belief Function Framework
Author :
Denoeux, Thierry
Author_Institution :
Centre de Rech. de Royallieu, Univ. de Technol. de Compiegne, Compiegne, France
Volume :
25
Issue :
1
fYear :
2013
fDate :
Jan. 2013
Firstpage :
119
Lastpage :
130
Abstract :
We consider the problem of parameter estimation in statistical models in the case where data are uncertain and represented as belief functions. The proposed method is based on the maximization of a generalized likelihood criterion, which can be interpreted as a degree of agreement between the statistical model and the uncertain observations. We propose a variant of the EM algorithm that iteratively maximizes this criterion. As an illustration, the method is applied to uncertain data clustering using finite mixture models, in the cases of categorical and continuous attributes.
Keywords :
data mining; maximum likelihood estimation; pattern clustering; EM algorithm; belief function framework; categorical attributes; continuous attributes; finite mixture models; generalized likelihood criterion maximization; maximum likelihood estimation; parameter estimation; statistical models; uncertain data clustering; uncertain observations; Bayesian methods; Clustering algorithms; Data mining; Data models; Hidden Markov models; Probability density function; Probability distribution; Uncertainty; Dempster-Shafer theory; EM algorithm; Evidence theory; Uncertain data mining; clustering; mixture models;
fLanguage :
English
Journal_Title :
Knowledge and Data Engineering, IEEE Transactions on
Publisher :
ieee
ISSN :
1041-4347
Type :
jour
DOI :
10.1109/TKDE.2011.201
Filename :
6025356
Link To Document :
بازگشت