Title :
Quasi-periodic surface Green´s dyad of a piezoelectric half-space
Author :
Jerez-Hanckes, Carlos ; Laude, Vincent
Author_Institution :
Seminar for Appl. Math., ETH Zurich, Zurich, Switzerland
Abstract :
We present a complete computation of the surface x1-periodic piezoelectric Green´s function based on the asymptotic decomposition method and Poisson´s summation formula. Spectral poles associated to surface acoustic waves render plane waves as expected. Behavior at small speed - large slownesses - portrays an oscillatory decay along the transversal direction while logarithmic singularities show up for longitudinal wave-numbers close to zero. At the sagittal plane, singularities arise from the periodic excitation, in accordance to previous 2-D models. Finally, we discuss the fast computation of series and future improvements.
Keywords :
Green´s function methods; Poisson equation; interdigital transducers; piezoelectricity; surface acoustic wave transducers; surface acoustic waves; Poisson summation formula; asymptotic decomposition method; logarithmic singularities; oscillatory decay; piezoelectric half-space; plane waves; quasiperiodic surface Green´s dyad; spectral poles; surface x1-periodic piezoelectric Green´s function; surface acoustic waves; Acoustic transducers; Acoustic waves; Distributed computing; Electrodes; Finite element methods; Fourier transforms; Green´s function methods; Mathematics; Seminars; Surface acoustic waves;
Conference_Titel :
Ultrasonics Symposium (IUS), 2009 IEEE International
Conference_Location :
Rome
Print_ISBN :
978-1-4244-4389-5
Electronic_ISBN :
1948-5719
DOI :
10.1109/ULTSYM.2009.5441899