• DocumentCode
    2003336
  • Title

    Combined Parameter and State Estimation in Particle Filtering

  • Author

    Yang, Xiaojun ; Shi, Kunlin ; Huang, Tao ; Xing, Keyi

  • Author_Institution
    Xi´´an Inst. of Electromech. Inf. Technol., Xi´´an
  • fYear
    2007
  • fDate
    May 30 2007-June 1 2007
  • Firstpage
    1036
  • Lastpage
    1039
  • Abstract
    In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering. The estimates of static parameters are obtained by state samples and maximum-likelihood estimation in particle filtering, and the stochastic approximation is used to approximate the gradient of cost function. The proposed algorithm achieves combined state and parameters estimation. Simulation result demonstrates the efficiency of the algorithm.
  • Keywords
    adaptive estimation; gradient methods; maximum likelihood estimation; nonlinear dynamical systems; particle filtering (numerical methods); state estimation; stochastic processes; adaptive estimation; cost function; gradient approximation; maximum-likelihood estimation; nonlinear dynamic system; parameter estimation; particle filtering; sequential Monte Carlo; state estimation; stochastic approximation; Adaptive estimation; Adaptive filters; Information filtering; Information filters; Maximum likelihood estimation; Nonlinear dynamical systems; Parameter estimation; Recursive estimation; State estimation; Yttrium; adaptive estimation; parameter estimation; particle filtering; sequential Monte Carlo;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Automation, 2007. ICCA 2007. IEEE International Conference on
  • Conference_Location
    Guangzhou
  • Print_ISBN
    978-1-4244-0818-4
  • Electronic_ISBN
    978-1-4244-0818-4
  • Type

    conf

  • DOI
    10.1109/ICCA.2007.4376514
  • Filename
    4376514