DocumentCode :
2003525
Title :
Identification of essential oil extraction system using Radial Basis Function (RBF) Neural Network
Author :
Yunan, Izzuddin ; Yassin, Ihsan M. ; Adnan, Syed Farid Syed ; Rahiman, Mohd Hezri Fazalul
Author_Institution :
Fac. of Electr. Eng., Univ. Teknol. Mara, Shah Alam, Malaysia
fYear :
2012
fDate :
23-25 March 2012
Firstpage :
495
Lastpage :
499
Abstract :
This paper presents an application of the Radial Basis Function Neural Network (RBFNN)-based identification of an essential oil extraction using Non-Linear Autoregressive Model with Exogenous Inputs (NARX) model. The dataset consisted of a Pseudo-Random Binary Sequence (PRBS) inputs as the control signal, and outputs depicting temperatures inside the distillation column. One Step Ahead (OSA) model fitting and residual tests demonstrated that the RBFNN-based NARX model was able to approximate the system well, while satisfying all validation criterias.
Keywords :
autoregressive processes; binary sequences; distillation equipment; essential oils; production engineering computing; radial basis function networks; OSA model fitting; PRBS; RBF neural network; RBFNN-based NARX model; control signal; distillation column; essential oil extraction system identification; exogenous inputs; nonlinear autoregressive model; one step ahead; pseudo-random binary sequence; radial basis function neural network; residual tests; Correlation; Mathematical model; Polynomials; Radial basis function networks; System identification; Testing; Training; Nonlinear Auto-Regressive with Exogenous Inputs (NARX) model; Radial Basis Function Neural Network (RBFNN); system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on
Conference_Location :
Melaka
Print_ISBN :
978-1-4673-0960-8
Type :
conf
DOI :
10.1109/CSPA.2012.6194779
Filename :
6194779
Link To Document :
بازگشت