DocumentCode :
2005976
Title :
Remaining useful life prediction based on nonlinear state space model
Author :
Jianmin, Zhao ; Tianle, Feng
Author_Institution :
Mech. Eng. Coll., Shijiazhuang, China
fYear :
2011
fDate :
24-25 May 2011
Firstpage :
1
Lastpage :
5
Abstract :
This paper proposes a nonlinear state space model (SSM) to estimate the health degradation and predict the remaining useful life(RUL) of industry asset. Expectation Maximization (EM) algorithm and particle filtering (PF) are introduced to estimate SSM parameters. A case study is utilized to predict RUL of industry asset.
Keywords :
expectation-maximisation algorithm; gears; particle filtering (numerical methods); remaining life assessment; RUL prediction; SSM parameter estimation; expectation maximization algorithm; health degradation estimation; industry asset; nonlinear state space model; particle filtering; remaining useful life prediction; Estimation; prediction; remaining useful life; state space model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Prognostics and System Health Management Conference (PHM-Shenzhen), 2011
Conference_Location :
Shenzhen
Print_ISBN :
978-1-4244-7951-1
Electronic_ISBN :
978-1-4244-7949-8
Type :
conf
DOI :
10.1109/PHM.2011.5939528
Filename :
5939528
Link To Document :
بازگشت