DocumentCode :
2008574
Title :
SSVEP frequency detection methods considering background EEG
Author :
Tanaka, T. ; Cheng Zhang ; Higashi, Hiroshi
Author_Institution :
Dept. of Electr. & Electron. Eng., Tokyo Univ. of Agric. & Technol., Koganei, Japan
fYear :
2012
fDate :
20-24 Nov. 2012
Firstpage :
1138
Lastpage :
1143
Abstract :
Detection of the frequency of steady-state visual evoked potentials (SSVEP) is addressed. We propose to use the canonical correlation analysis (CCA) with linear discriminant analysis (LDA), as well as some modifications of the so-called rhythmic component extraction (RCE) that can consider the background EEG spectra Classification accuracy and the information transfer rate (ITR) are examined in classification of six commands.
Keywords :
correlation methods; electroencephalography; medical signal processing; signal classification; spectral analysis; CCA; LDA; RCE; SSVEP; background EEG spectra classification accuracy; canonical correlation analysis; command classification; frequency detection method; information transfer rate; linear discriminant analysis; rhythmic component extraction; steady-state visual evoked potential;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Soft Computing and Intelligent Systems (SCIS) and 13th International Symposium on Advanced Intelligent Systems (ISIS), 2012 Joint 6th International Conference on
Conference_Location :
Kobe
Print_ISBN :
978-1-4673-2742-8
Type :
conf
DOI :
10.1109/SCIS-ISIS.2012.6505369
Filename :
6505369
Link To Document :
بازگشت