Title :
Connection-centric network for spiking neural networks
Author :
Emery, Robin ; Yakovlev, Alex ; Chester, Graeme
Author_Institution :
Newcastle Univ., Newcastle-upon-Tyne
Abstract :
A reconfigurable network architecture applied to spiking neural networks is presented. For hardware platforms for neural networks that implement some degree of realism of interest to neuroscientists, connectivity between neurons can be a major limitation. Recent data indicates that neurons in the brain form clusters of connections. Through the combination of this data and a routing scheme that uses a hybrid of short-range direct connectivity and an AER (address event representation) network, the presented architecture aims to provide a useful amount of inter-neuron connectivity. A connection-centric design can provide opportunities for NoCs such as optimising power, bandwidth or introducing redundancy. A method of mapping a network to the architecture is discussed, along with results of optimal hardware specifications for a given set of network parameters.
Keywords :
bioelectric potentials; brain; network-on-chip; neurophysiology; reconfigurable architectures; AER network; NoC; address event representation; brain; connection-centric network; inter-neuron connectivity; network-on-chip; optimal hardware specification; reconfigurable network architecture; spiking neural network; Biological neural networks; Biomembranes; Brain modeling; Chemicals; Nerve fibers; Network-on-a-chip; Neural network hardware; Neural networks; Neurons; Routing;
Conference_Titel :
Networks-on-Chip, 2009. NoCS 2009. 3rd ACM/IEEE International Symposium on
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-4142-6
Electronic_ISBN :
978-1-4244-4143-3
DOI :
10.1109/NOCS.2009.5071462