Title :
A Nonlinear Biomechanical Model Based Registration Method for Aligning Prone and Supine MR Breast Images
Author :
Lianghao Han ; Hipwell, John H. ; Eiben, Bjorn ; Barratt, Dean ; Modat, Marc ; Ourselin, Sebastien ; Hawkes, D.J.
Author_Institution :
Sch. of Med., Tongji Univ., Shanghai, China
Abstract :
Preoperative diagnostic magnetic resonance (MR) breast images can provide good contrast between different tissues and 3-D information about suspicious tissues. Aligning preoperative diagnostic MR images with a patient in the theatre during breast conserving surgery could assist surgeons in achieving the complete excision of cancer with sufficient margins. Typically, preoperative diagnostic MR breast images of a patient are obtained in the prone position, while surgery is performed in the supine position. The significant shape change of breasts between these two positions due to gravity loading, external forces and related constraints makes the alignment task extremely difficult. Our previous studies have shown that either nonrigid intensity-based image registration or biomechanical modelling alone are limited in their ability to capture such a large deformation. To tackle this problem, we proposed in this paper a nonlinear biomechanical model-based image registration method with a simultaneous optimization procedure for both the material parameters of breast tissues and the direction of the gravitational force. First, finite element (FE) based biomechanical modelling is used to estimate a physically plausible deformation of the pectoral muscle and the major deformation of breast tissues due to gravity loading. Then, nonrigid intensity-based image registration is employed to recover the remaining deformation that FE analyses do not capture due to the simplifications and approximations of biomechanical models and the uncertainties of external forces and constraints. We assess the registration performance of the proposed method using the target registration error of skin fiducial markers and the Dice similarity coefficient (DSC) of fibroglandular tissues. The registration results on prone and supine MR image pairs are compared with those from two alternative nonrigid registration methods for five breasts. Overall, the proposed algorithm achieved the best registration - erformance on fiducial markers (target registration error, 8.44 ±5.5 mm for 45 fiducial markers) and higher overlap rates on segmentation propagation of fibroglandular tissues (DSC value > 82%).
Keywords :
biomechanics; biomedical MRI; cancer; deformation; finite element analysis; image registration; image segmentation; medical image processing; muscle; optimisation; skin; tumours; 3D information; Dice similarity coefficient; FEA; MRI; breast conserving surgery; cancer; external forces; fibroglandular tissues; finite element based biomechanical modelling; gravitational force; gravity loading; material parameters; nonlinear biomechanical model based registration method; nonlinear biomechanical model-based image registration method; nonrigid intensity-based image registration; pectoral muscle; physically plausible deformation; preoperative diagnostic magnetic resonance breast images; prone magnetic resonance breast image aligning; segmentation propagation; simultaneous optimization procedure; skin fiducial markers; supine magnetic resonance breast image aligning; supine position; suspicious tissues; target registration error; Biological system modeling; Biomechanics; Breast; Image registration; Load modeling; Muscles; Surgery; Biomechanics; biomedical imaging; breast; finite element methods; image registration; surgery;
Journal_Title :
Medical Imaging, IEEE Transactions on
DOI :
10.1109/TMI.2013.2294539